Proceedings of the ASME 2017 Power and Energy Conference

PowerEnergy2017
June 26-30, 2017, Charlotte, North Carolina, USA

PowerEnergy2017-3589

CYBER-PHYSICAL SYSTEM DEVELOPMENT ENVIRONMENT
FOR ENERGY APPLICATIONS

Thomas Roth
Eugene Song
Martin Burns

Smart Grid & Cyber-Physical Systems Program Office

Engineering Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8200 USA
{thomas.roth,eugene.song,martin.burns}@nist.gov

ABSTRACT

Cyber-physical systems (CPS) are smart systems that in-
clude engineered interacting networks of physical and compu-
tational components. The tight integration of a wide range of
heterogeneous components enables new functionality and qual-
ity of life improvements in critical infrastructures such as smart
cities, intelligent buildings, and smart energy systems. One ap-
proach to study CPS uses both simulations and hardware-in-the-
loop (HIL) to test the physical dynamics of hardware in a con-
trolled environment. However, because CPS experiment design
may involve domain experts from multiple disciplines who use
different simulation tool suites, it can be a challenge to integrate
the heterogeneous simulation languages and hardware interfaces
into a single experiment. The National Institute of Standards and
Technology (NIST) is working on the development of a universal
CPS environment for federation (UCEF) that can be used to de-
sign and run experiments that incorporate heterogeneous phys-
ical and computational resources over a wide geographic area.
This development environment uses the High Level Architec-
ture (HLA), which the Department of Defense has advocated for
co-simulation in the field of distributed simulations, to enable
communication between hardware and different simulation lan-
guages such as Simulink and LabVIEW. This paper provides an
overview of UCEF and motivates how the environment could be
used to develop energy experiments using an illustrative example
of an emulated heat pump system.

Himanshu Neema
William Emfinger
Janos Sztipanovits
Institute for Software-Integrated Systems
Vanderbilt University
Nashville, TN 37212 USA
{himanshu,emfinger,sztipaj}@isis.vanderbilt.edu

Introduction

A cyber-physical system (CPS) consists of a set of interact-
ing cyber-physical devices where each device contains some cy-
ber computation that can sense events from and actuate changes
on a physical infrastructure. Examples of CPS include smart
cities, intelligent buildings, and the smart grid. One method to
validate a CPS design uses hardware-in-the-loop (HIL) in con-
junction with simulations to test the runtime dynamics of a cyber-
physical device in a virtual test environment. A challenge of ex-
periments that incorporate both HIL and simulations is that they
often require a testbed that integrates hardware components with
multiple, heterogeneous simulation environments.

A large number of HIL testbeds which offer unique exper-
imental opportunities cannot be replicated due to limitations in
both hardware cost and development time [1-5]. These testbeds
often have different architectures and utilize different simulation
languages because of their independent development histories,
and an experiment tailored for one testbed might not be compat-

Official contribution of the National Institute of Standards and Tech-
nology; not subject to copyright in the United States. Certain commercial
products are identified in order to adequately specify the procedure; this does
not imply endorsement or recommendation by NIST, nor does it imply that such
products are necessarily the best available for the purpose.

ible with another architecture. The inability to exploit the full
range of available resources in the CPS landscape leads to seg-
regated groups of researchers who are experts in a single testbed
environment but face challenges in the adoption of external re-
search advances. In addition, integrated experiments for CPS
require access to resources pooled from multiple domains to pro-
duce faithful models of the deployed system. For example, ex-
periments on smart cities may involve collaboration across do-
mains such as transportation, energy, and emergency response.
An experiment should integrate models developed in those do-
mains, which may involve domain-specific tools (e.g. a traffic
simulator written in C++), to achieve the most realistic result.

NIST envisions a universal CPS environment for federation
(UCEF) which enables experiments to exploit multiple testbed
architectures using a common interface. The United States De-
partment of Defense mandated a common integration platform
in the field of distributed simulators called the High Level Archi-
tecture (HLA) [6]. This paper demonstrates the use of HLA in
the design and implementation of cyber-physical devices using
an integration architecture that supports collaboration between
physical hardware and simulations. The approach is highlighted
using an example CPS implementation of an HVAC system con-
trolled by a thermostat with a remote temperature sensor, which
is a straightforward and well understood application that does not
require deep domain expertise to comprehend.

The rest of the paper is organized as follows. Section II pro-
vides an overview of HLA and the design process to implement
an HLA federation. Section III demonstrates this design pro-
cess in an example CPS through implementation of a distributed
HVAC system. Section IV outlines other work on the integration
of HLA with hardware, and the paper concludes with Section V.

High Level Architecture

HLA is an IEEE standard for distributed simulation in which
individual simulations called federates join together to form a co-
operative federation [6]. All federates in a federation interact us-
ing a Run-Time Infrastructure (RTI) software implementation of
a set of HLA services such as publish-subscribe messaging, log-
ical time management, and distributed object management. Data
exchanges between the federates must adhere to a federation ob-
ject model (FOM) which defines the set of messages understood
by the federation. Although the original intent of HLA was to
allow federated co-simulation of simulation platforms such as
MATLAB and Modelica, a CPS federate could represent a cyber-
physical device. This section provides a brief overview of this
paper’s approach to designing an HLA federation with hardware-
in-the-loop. The overview is based on a model-based simulation
integration environment developed and maintained by Vander-
bilt University called the Command and Control Wind Tunnel
(C2WT) [7], but has been sufficiently generalized to be applica-
ble to alternative HLA development environments.

Federation Stack Architecture

HLA does not mandate a specific RTI implementation,
which can consist of two different types of components. A Local
RTI Component (LRC) provides an Application Program Inter-
face (API) to interface federates with the RTI, and a Central RTI
Component (CRC) coordinates the other run-time components.
A specific RTT implementation may provide a centralized CRC,
multiple hierarchical CRCs, or no CRC. The results in this pa-
per use an open-source RTI implementation called Portico which
implements the LRC at each federate and requires no CRC [8].
Fig. 1 shows a federation stack architecture for this implemen-
tation that illustrates the necessary components for a federate.
This figure contains three example federate types: a simulation,
a cyber-physical device, and a federation manager that drives an
experiment.

RTI (UDP/IP or TCP/IP)

) 1

Federation 1

1 1
12 \
' Federate Federate Federate !
1= - 1
& Simulation Model (RERTES [Experiment 1
© the Loop]

1]
]

’ : - HIL Proxy Federation 1
Simulation Integration Wrapper (Optional) Ve %

]

]

HLA Interface HLA Interface HLA Interface 1

Simulation }

ER0ES LocalRTI | € LocalRTI |2 LocalRTI | !
Component | § Component | 3 Component | §]

1

- - 1

. Operating Operating 1

Operating System System System 1

]

1

1

1

]

]

]

1

.

FIGURE 1. Federation Stack Architecture

Each federate has a Local RTI Component implementation
which enables it to communicate with the federation, and all fed-
erates must use the same LRC implementation to ensure coherent
communication between the federation members. The Portico
LRC implementation uses either TCP/IP or UDP/IP sockets for
its intra-federation communication. On top of this communica-
tion infrastructure, an HLA Interface exposes the set of standard-
ized services available for federates. For the C2WT integration
environment, the HLA interface is a Java abstract class which
exposes the various HLA services as Java functions. The imple-
mentation of the LRC and its HLA interface are uniform across
all of the federate types.

For simulation platforms such as MATLAB, the federate
must also contain a Simulation Engine that runs the simulation
models. The simulation engine may not have a native RTI in-
terface. In order to make these platforms compatible with HLA,
an adapter labeled the Simulation Integration Wrapper must be

developed to translate the HLA interface into the language of the
simulation engine. These wrappers are reusable and all of the
models for the same simulation engine use the same wrapper im-
plementation to join an HLA federation.

For hardware-in-the-loop, there is no simulation engine and
the ease of HLA integration depends on whether the hardware
controller can run the RTI implementation and its dependencies.
The Portico LRC, for example, is written in Java and might not
be able to run on all embedded systems. For the cases that do not
support Java, an HIL proxy for the hardware must be deployed
on a separate, compatible processor. This proxy federate serves
as an adapter between the hardware and the HLA interface and
can use any protocol to connect to the hardware while using the
LRC’s communication stack to expose the hardware interface to
the federation.

Each federation has an additional Federation Manager that
coordinates the other federates and runs the experiment. The fed-
eration manager’s responsibilities include creation of the federa-
tion and management of synchronization points such as simula-
tion start. The federation manager can also affect the operational
flow of an experiment based on its intermediate results, provid-
ing a powerful and flexible experiment design capability. This
federation manager is not part of the HLA standard, but is a nat-
ural way to provide the ability to affect the runtime behavior of
a federation execution for an experiment. It is important to note
that the federation manager is a normal HLA federate and has
the same access to the HLA services as all other federates in the
federation.

Federate Development Workflow

The NIST vision of a UCEF testbed consists of an open
database of simulation and hardware federates as described in the
prior section that can be composed into complex cyber-physical
experiments. One requirement for this vision is an integration
environment where the various pieces of the stack architecture
can be developed and assembled. Fig. 2 shows the development
workflow to create the necessary parts for this architecture.

The Web Generic Modeling Environment (WebGME), de-
veloped by Vanderbilt University, provides tools and methods for
creating meta-models for rich Domain-Specific Modeling Lan-
guages (DSMLs) which can then be used to design domain mod-
els and generatively synthesize programs [9]. WebGME has been
leveraged to create a DSML for modeling HLA federations. In
practice, WebGME could be replaced with an alternative tool in
the development workflow as long as the new tool maintained
the same interfaces shown in the figure. One function of We-
bGME is to model Federate Interfaces, which in the language
of HLA would be the Simulation Object Model (SOM) which
describes the publish-subscribe model for a federate. A second
function of WebGME is to use code generation to transform the
modeled federate interfaces into basic federate implementations,

Federate Descriptor

I i

H 1

s \ i i

Existing : Simulation 1

Applications 1 Wrappers :

1]
v i -
de stub 1 |2

code stu I ; Fe=th 1
mple_mentatlon HLA Appllca_tlon H S
Environment 1 Implementations 1 =
N J ! 1 LE
WebGME 1 : =
! 1 [
H Federate : £
< 1 Interfaces 1 2
B T 1 @
1 1 o

|]

Experiment
Configurations e

FIGURE 2. Federation Development Workflow

or code stubs. This generated code stub contains the HLA in-
terface block shown in Fig. 1, which must then be extended into
either a simulation or hardware application. An Implementation
Environment (such as MATLAB or Java) must be used to either
extend this code stub or integrate it with an Existing Applica-
tion to produce an HLA Application. If the HLA application uses
a simulation platform that requires custom wrapper code to in-
tegrate with HLA, then the application code must be combined
with the Simulation Integration Wrapper prior to deployment.
A federate descriptor combines the federate interface, its imple-
mentation in either simulation or hardware, and any simulation
wrapper necessary to integrate the federate with HLA.

After a database of federate descriptors has been developed,
a subset of the descriptors must be combined together to form a
federation that performs some useful experiment. Another func-
tion of WebGME is the ability to produce Experiment Config-
urations which includes programming the federation manager’s
runtime behavior using a graphical language such as courses of
action [10] or colored Petri nets [11]. The experiment configu-
ration defines which federate descriptors will participate in the
federation, where each federate descriptor will be deployed, and
what script the federation manager will use for the experiment.

Example HVAC System

This section introduces a simple heating, ventilating, and air
conditioning (HVAC) system that will be used to demonstrate
the implementation of a hardware federate in HLA. An HVAC
system was selected as the example implementation because it is
a well understood application.

Fig. 3 shows the federation design for a thermostat that con-
trols the HVAC system using a remote temperature sensor. The
federation consists of three federates excluding the federation
manager. The HVAC federate controls a relay board connected
to two fans and a Peltier heat pump to change the temperature
of a pair of heatsinks. The remote temperature sensor federate
reads the temperature measurement of a sensor placed inside one

Heatsink E House
& (heatsink)
I
@
T
5] Temperature
T Sensor
o
12C
Beaglebone Black
Thermostat HVAC Federate Remote
Control Algorithm Temperature Sensor
HLA Interface HLA Interface HLA Interface

| |
Run-Time Infrastructure (RTI)

FIGURE 3. Federated HVAC System Design

heatsink that represents a house. Both of these federates run on
a BeagleBone Black (BBB) and communicate with a thermostat
federate over the RTI. The thermostat can remotely pull the house
temperature from the temperature sensor via the BBB, compare
it to some internal set point, and then remotely issue commands
to the heat pump to maintain the set point.

Hardware Implementation

The thermostat issues heating and cooling commands to the
heat pump to control the temperature of the heatsink that repre-
sents a house. A Peltier heat pump can transfer heat from one
side of the device to the other based on the direction of the elec-
tric current. This enables the heat pump to provide both of the
required heating and cooling functions. Fig. 4 shows the hard-
ware implementation of the federated HVAC system. At the top
of the figure, a 12 V, 5 A Peltier Thermo-Electric Cooler Module
and Heatsink Assembly is mounted onto an additional heatsink
and fan assembly with thermal paste and an aluminum clamp. A
Microchip MCP9808 temperature sensor is inserted into the right
heatsink to measure the temperature of the house. The tempera-
ture sensor communicates using a 2-wire inter-integrated circuit
(I2C) bus that allows for serial communication between a master
device (e.g. BBB) and its slave devices (e.g. temperature sensor).

The BBB is an embedded computer with an AM335x 1 GHz
ARM Cortex-A8 processor that is compatible with Debian, An-
droid, Ubuntu, and Cloud9 [12]. The libbulldog Java library for
the BBB provides low-level 10 capabilities for embedded linux
systems which includes the ability to access the general purpose
10 pins and communicate to slave devices using I12C [13]. Fig. 5
shows how the BBB was integrated with the hardware in the
HVAC system. A 4-channel relay board was inserted between
the BBB and the heatsinks and fans, with one pin allocated for

Peltier heat pump

Temperature
sensor

Relay board

BBB controller

FIGURE 4. HVAC System Hardware Implementation

Peltier Heat Pump Fans
12vDC @ @
5A -
L :
L
Temperature Sensor

\L JHWHL JHLR“\

Relay Board
vdd Gnd |
T T T T 1

AEEREENER il
P94: VDD — ‘ P9.3:VDD —
PO2:GND Heat ‘ P9-1: GND
P9-15: GPIO-48 Cool P9-19: SCL
P9-23: GPIO-49 Fan1| P9-20: SDA
P9-30: GPIO-112 —————————— Fan2
P9-27: GPIO-115 : Beaglebone Black

FIGURE 5. BeagleBone Black Pin Connections

each fan and two pins for the heat pump. The fan signal repre-
sents its on/off state, while the two heat pump signals determine
whether the unit is off, heating, or cooling. The BBB is also
connected to the temperature sensor using its I2C serial commu-
nication ports. These connections allow the federates running on
the BBB to read the temperature measurement and control the
heat pump and associated fans.

Federate Implementation

The hardware implementation discussed so far falls into the
Existing Applications box in Fig. 2. This section will describe
how to create the three required federate descriptors to turn the
hardware into an HLA application.

The first step is to design the various federate interfaces in
WebGME. Fig. 6 shows the federation design for the HVAC sys-
tem in this environment. The federation consists of three feder-
ates: a hardware HVAC federate which controls the relay board,
a HIL proxy federate for the temperature sensor, and a soft-

ware thermostat federate for the control algorithm that uses the
temperature measurement to generate heating and cooling com-
mands. The temperature sensor federate publishes a single in-
teraction called SensorMessage which contains the temperature
measurement from the sensor located in the house heatsink. The
thermostat federate subscribes to this interaction, with the ex-
pectation that the temperature measurement will be used to per-
form some amount of internal computation. The result of this
computation is published to the HVAC federate through the Con-
trolMessage interaction which contains four bit values for the
relay board in the hardware implementation.

The code generation capability of WebGME can generate
code stubs from these federate interfaces which contain boiler-
plate HLA code for connecting to the Portico LRC implemen-
tation. For the thermostat control algorithm, this code stub was
extended into a simple Java program that extracts the tempera-
ture measurement from the SensorMessage, compares the mea-
surement to an internal set point, and generates heating or cool-
ing commands to maintain that set point. The HVAC federate
was also extended into a Java program that turns the generated
heating and cooling commands into electronic actuation. Its im-
plementation leverages the libbulldog library which provides a
Java interface to the BBB general I/O pins connected to the relay
board. The temperature sensor required an HIL proxy federate
to translate between the communication infrastructure provided
by the Portico LRC implementation and its 12C serial bus. This
proxy federate uses I2C to read the measurement produced by
the temperature sensor, package the measurement in an HLA
message format, and broadcast the measurement to the federa-
tion. The temperature sensor proxy federate was also developed
in Java and used the same libbulldog library to create an 12C
connection between the BBB and the temperature sensor device.
Fig. 7 shows a sequence diagram of one round of message ex-
changes between the three federates during the federation execu-
tion.

The complete federate descriptor for each federate consists
of its Java implementation and the WebGME project that defines
its interface. Because the HVAC system did not require a sim-
ulator, none of the federate descriptors include a simulation in-
tegration wrapper. Now an experiment must be designed that
describes the configuration in which the federate descriptors will
be used in a larger federation.

Experimental Federate Design and Results

The experiment was configured to run both the HVAC and
temperature sensor federates on the BBB and the thermostat fed-
erate on an Ubuntu desktop machine. The Ubuntu machine was
connected to the BBB using a USB cable, and all communication
used a USB network interface. The thermostat federate was con-
figured to maintain a temperature set point of 38°C with a toler-
ance of 1°C. As mentioned before, an additional federation man-

ager federate was used to create the federation and coordinate
the progression of the experiment. The federation manager was
deployed on the Ubuntu machine using the experimental config-
uration generated by WebGME to inform it of the other federates
expected to participate in the federation. Once all of the feder-
ates had joined the federation execution, the federation manager
began a simulation that was configured to run for 180 seconds.
Fig. 8 shows the temperature measurement read by the BBB dur-
ing the federation execution. The BBB federate that controls the
heatsink temperature was implemented using a simple control al-
gorithm that did not model the physical system dynamics. Using
the tools described in this paper, this control federate could be
replaced with a federate using a different control algorithm that
includes a prediction model to keep the temperature within the
1°C tolerance. The HLA implementation of the HVAC system
with a remote temperature sensor functions as intended, and the
federates coordinate over HLA to maintain the desired tempera-
ture set point.

Related Work

The original intent of HLA was to enable co-simulation be-
tween simulators with no notion of the hardware-in-the-loop de-
scribed in this paper. There are pure simulation environments
that integrate multiple tools using HLA federation to model more
complex systems appropriate for the CPS domain. EPOCHS is
one example which uses HLA to combine power simulation soft-
ware with a network simulator to enable more accurate simu-
lation of smart grids [14]. These simulation environments are
useful experimental tools, but are not readily applicable to HIL
testbeds. There have been several efforts which have extended
HLA to support hardware for specific experiments in the do-
mains of mechatronic systems [15], power systems [16], and
embedded devices [17]. These efforts were focused on domain
specific experimental outcomes rather than documentation of the
development process for hardware federate interfaces, and their
approaches are consistent with the architecture detailed in this
paper.

In addition to efforts to develop HLA interfaces for specific
simulations or hardware, several development environments to
design these interfaces have emerged in recent literature. The
authors in [18] extend the SysML modeling language to support
HLA federation design and add a code generation capability to
transform SysML models into code stubs for federate implemen-
tation. The authors in [19] introduce the architecture and work-
flow required to integrate new simulators with HLA using a sim-
ilar SysML approach. Both of these environments are consistent
with the figures and discussion in Section II with the exception
of modeling using SysML instead of the model integration lan-
guage for WebGME.

®® GME > guest/BBBHelloWorld > master
°o- I N a EE

Federates

TemperatureSensor

mapsTo

SensorMessage
<C2WiInteractionRoot>
PARAMETERS

Thermostat

88BHelloWorld
4 14 BBBHelloWorid
® Base
+ 14 Federates
14 ControiMessage
3 HvAC
14 SensorMessage
@ staticinteractionPy
® staticinteractionPy
@ StaticinteractionSt
@ StaticinteractionSt.
 TemperatureSenst
% Thermostat
% Fco

double
String
String

temperature:
originFed:
sourceFed:

TMapsTo

ControlMessage
<C2WiInteractionRoot> Atbutes | Pointers Meta Preferenc
PARAMETERS GuD 59¢9a508-1bdb-751d-.

cooling: boolean HVAC D 12140716171/G
fanl: boolean b B
fan2: boolean
heating: boolean name)
originFed: String
sourceFed: String

(INSTNC) NOTIFICATIONS[0] (CONNECTED] o (=l

FIGURE 6. Federation Design of the HVAC System in WebGME

Temperature | | Temp Sensor Thermostat HVAC Relay Board Heat Pump Fan 1 Fan 2
Sensor Device Federate Federate Federate

i _read device | H H i | | |
temperature 5 5 3 5 5 3
SensorMessage E i i E E i

i compare set point ; i ; i

i (; ; i i | | |

| Controlessage! | | | |

i control bits ! electrdnic actuations f

! heating / cooling} 1 ;

i P fant !

i 1 1 fan2 i
| U : ' 0

FIGURE 7. Sequence Diagram of the Federation Execution

Conclusion

This paper demonstrated how to design and implement HLA
federates for cyber-physical devices using an example HVAC
application. The original intent of HLA was to enable co-
simulation of discrete simulation platforms, but the design and
implementation of simple hardware federates can easily conform
to the standard. The tools and design process described in this
paper can be used to integrate more complex hardware imple-
mentations with HLA, leading to the development of federates
that encapsulate entire testbed architectures.

Further efforts to integrate complex hardware with HLA
could potentially enable a public database of federate descrip-
tors which includes both simulation and hardware from which
an experiment could be assembled to test sophisticated energy
applications. However, adherence to the HLA standard does not
require documentation of a federate’s functionality beyond the
simulation object model that describes data exchanges in terms

of publications and subscriptions. For a CPS, the data exchange
model is insufficient to capture the complexities of a physical
system which might have instability concerns related to the tim-
ing and values of the messages it receives from different sources.
One aspect missing from the presented architecture is a means to
document these interoperability constraints which would enable
a domain expert to determine when a set of federate descriptors
were composable. Future work will begin to enumerate the in-
teroperability constraints that must be documented for each fed-
erate.

The goal of this research is to realize federate descriptors for
testbeds and refine the federation development workflow to sup-
port multiple testbed architectures. The end result will be the de-
sign of a universal CPS environment for federation (UCEF) that
is flexible enough to run experiments across multiple domains
using resources from multiple HIL testbeds. NIST is working
with Vanderbilt University and others to develop the components

temperature (°C)
\\
&
‘\
Q..

o

30 60 90 120 150 180
federation time (s)

FIGURE 8. Temperature during Federation Execution

of this design and package them into a development environment
to readily model, implement, and deploy CPS experiments.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Chen, X., and Sun, J., 2011. “Characterization of inverter-
grid interactions using a hardware-in-the-loop system test-
bed”. In 2011 8th International Conference on Power Elec-
tronics and ECCE Asia (ICPE & ECCE), IEEE, pp. 2180—
2187.

Prokhorov, A. V., Guseyv, A. S., and Borovikov, Y. S., 2013.
“Hardware-in-the-loop testbed based on hybrid real time
simulator”. In Innovative Smart Grid Technologies Europe
(ISGT EUROPE), 2013 4th IEEE/PES, IEEE, pp. 1-5.
Stanovich, M. J., Leonard, 1., Sanjeev, K., Steurer, M.,
Roth, T. P, Jackson, S., and Bruce, M., 2013. “Develop-
ment of a smart-grid cyber-physical systems testbed”. In In-
novative Smart Grid Technologies (ISGT), 2013 IEEE PES,
IEEE, pp. 1-6.

Pang, X., Wetter, M., Bhattacharya, P., and Haves, P., 2012.
“A framework for simulation-based real-time whole build-
ing performance assessment”. Building and Environment,
54, pp. 100-108.

Haves, P., and Xu, P., 2007. “The building controls virtual
test bed a simulation environment for developing and test-
ing control algorithms, strategies and systems”. In Proc. of
the 10-th IBPSA Conference, pp. 1440-1446.

, 2010. “IEEE standard for modeling and simulation
(M&S) high level architecture (HLA)- framework and
rules”. IEEE Std 1516-2010 (Revision of IEEE Std 1516-
2000), Aug, pp. 1-38.

Hemingway, G., Neema, H., Nine, H., Sztipanovits, J.,
and Karsai, G., 2012. “Rapid synthesis of high-level

(8]
[9]

(10]

(11]
[12]
(13]

(14]

[15]

(16]

(17]

(18]

[19]

architecture-based heterogeneous simulation: a model-
based integration approach”. Simulation, 88(2), pp. 217-
232.

Portico. https://github.com/openlvc/portico. [accessed 11-
March-2016].

Maréti, M., Kecskés, T., Kereskényi, R., Broll, B,
Volgyesi, P., Jurdcz, L., Levendovszky, T., and Lédeczi, A.,
2014. “Next generation (meta) modeling: Web-and cloud-
based collaborative tool infrastructure.”. In MPM@ MoD-
ELS, pp. 41-60.

Neema, H., Karsai, G., and Levis, A., 2015. “Next-
generation command and control wind tunnel for courses
of action simulation”. Technical Report ISIS-15-119, May,
p. 119.

Jensen, K., 1987. “Coloured petri nets”. In Petri nets: cen-
tral models and their properties. Springer, pp. 248-299.
Beaglebone black. https://beagleboard.org/black. [accessed
8-April-2016].

libbulldog. http://beagleboard.org/project/libbulldog. [ac-
cessed 02-June-2016].

Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman,
K., and Coury, D., 2006. “EPOCHS: a platform for agent-
based electric power and communication simulation built
from commercial off-the-shelf components”. IEEE Trans-
actions on Power Systems, 21(2), pp. 548-558.

Kanai, S., Miyashita, T., and Tada, T., 2007. “A multi-
disciplinary distributed simulation environment for mecha-
tronic system design enabling hardware-in-the-loop simu-
lation based on HLA”. International Journal on Interactive
Design and Manufacturing (IJIDeM), 1(3), pp. 175-179.
Jablkowski, B., Spinczyk, O., Kuech, M., and Rehtanz, C.,
2014. “A hardware-in-the-loop co-simulation architecture
for power system applications in virtual execution environ-
ments”. In 2014 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), IEEE, pp. 1-
6.

Brito, A. V., and Nascimento, T. P., 2015. “Verification
of embedded system designs through hardware-software
co-simulation”. International Journal of Information and
Electronics Engineering, 5(1), p. 68.

Bocciarelli, P., D’ Ambrogio, A., Giglio, A., and Gianni,
D., 2013. “A SaaS-based automated framework to build
and execute distributed simulations from SysML mod-
els”. In 2013 Winter Simulation Conference (WSC), IEEE,
pp. 1371-1382.

Jain, A., Fuyjimoto, R., Crittenden, J., Liu, M., Kim, J., and
Lu, Z.,2015. “Towards automating the development of fed-
erated distributed simulations for modeling sustainable ur-
ban infrastructures”. In 2015 Winter Simulation Confer-
ence (WSC), IEEE, pp. 2668-2679.

